Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 990794, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311757

RESUMO

The immune system protects from infections and cancer through complex cellular networks. For this purpose, immune cells require well-developed mechanisms of energy generation. However, the immune system itself can also cause diseases when defective regulation results in the emergence of autoreactive lymphocytes. Recent studies provide insights into how differential patterns of immune cell responses are associated with selective metabolic pathways. This review will examine the changing metabolic requirements of Th17 cells and of B cells at different stages of their development and activation. Both cells provide protection but can also mediate diseases through the production of autoantibodies and the production of proinflammatory mediators. In health, B cells produce antibodies and cytokines and present antigens to T cells to mount specific immunity. Th17 cells, on the other hand, provide protection against extra cellular pathogens at mucosal surfaces but can also drive chronic inflammation. The latter cells can also promote the differentiation of B cells to plasma cells to produce more autoantibodies. Metabolism-regulated checkpoints at different stages of their development ensure the that self-reactive B cells clones and needless production of interleukin (IL-)17 are limited. The metabolic regulation of the two cell types has some similarities, e.g. the utility of hypoxia induced factor (HIF)1α during low oxygen tension, to prevent autoimmunity and regulate inflammation. There are also clear differences, as Th17 cells only are vulnerable to the lack of certain amino acids. B cells, unlike Th17 cells, are also dependent of mechanistic target of rapamycin 2 (mTORC2) to function. Significant knowledge has recently been gained, particularly on Th17 cells, on how metabolism regulates these cells through influencing their epigenome. Metabolic dysregulation of Th17 cells and B cells can lead to chronic inflammation. Disease associated alterations in the genome can, in addition, cause dysregulation to metabolism and, thereby, result in epigenetic alterations in these cells. Recent studies highlight how pathology can result from the cooperation between the two cell types but only few have so far addressed the key metabolic alterations in such settings. Knowledge of the impact of metabolic dysfunction on chronic inflammation and pathology can reveal novel therapeutic targets to treat such diseases.


Assuntos
Autoimunidade , Células Th17 , Humanos , Linfócitos B , Inflamação , Autoanticorpos
2.
J Autoimmun ; 128: 102810, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35245865

RESUMO

Splice variants of CD74 differentially modulate the activity of cathepsin L (CTSL). As CD74 and CTSL participate in the pathogenesis of inflammatory diseases such as rheumatoid arthritis (RA), we determined whether splice variants of CD74 could be biomarkers of disease activity. Gene expression was measured in mice with collagen-induced arthritis using quantitative PCR (qPCR). In vitro studies using murine macrophage/DC-lineage cells determined the relative influence of macrophage phenotype on isoform expression and the potential to produce CTSL in response to TNF. CD74 splice variants were measured in human RA synovium and RA patients' monocytes. In arthritic mice, the expression of the p41 CD74 isoform was significantly higher in severely affected paws compared with unaffected paws or the paws of naïve mice; the p41 isoform significantly correlated with the expression of TNF in arthritic paws. Compared with M2-like macrophages, M1-like macrophages expressed increased levels of CD74 and had higher expression, secretion and activity of CTSL. RA patients that responded to TNF blockade had significantly higher expression levels of CD74 in circulating monocytes after treatment, compared with non-responders. The expression of the human CD74 isoform a was significantly higher in RA synovia, compared with osteoarthritis synovia, and was associated with CSTL enzymatic activity. This study is the first to demonstrate differential expression of the CD74 p41 isoform in an auto-immune disorder and in response to therapy. The differential expression of CD74 splice variants indicates an association, and potentially a mechanistic role, in the pathogenesis of RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Animais , Antígenos de Diferenciação de Linfócitos B/genética , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Camundongos , Isoformas de Proteínas/genética
3.
J Autoimmun ; 118: 102597, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33493980

RESUMO

The role of the innate immune system has been established in the initiation and perpetuation of inflammatory disease, but less attention has been paid to its role in the resolution of inflammation and return to homeostasis. Toll-like receptor (TLR) expression profiles were analysed in tissues with differing disease status in rheumatoid arthritis (RA), ankylosing spondylitis (AS), and in experimental arthritis. TLR gene expression was measured in whole blood and monocytes, before and after TNF blockade. In RA and osteoarthritis synovia, the expression of TLRs was quantified by standard curve qPCR. In addition, four distinct stages of disease were defined and validated in collagen-induced arthritis (CIA), the gold standard animal model for RA - pre-onset, early disease, late disease and immunised mice that were resistant to the development of disease. TLR expression was measured in spleens, lymph nodes, blood cells, liver and the paws (inflamed and unaffected). In RA whole blood, the expression of TLR1, 4 and 6 was significantly reduced by TNF blockade but the differences in TLR expression profiles between responders and non-responders were less pronounced than the differences between RA and AS patients. In RA non-responders, monocytes had greater TLR2 expression prior to therapy compared to responders. The expression of TLR1, 2, 4 and 8 was higher in RA synovium compared to control OA synovium. Circulating cytokine levels in CIA resistant mice were similar to naïve mice, but anti-collagen antibodies were similar to arthritic mice. Distinct profiles of inflammatory gene expression were mapped in paws and organs with differing disease status. TLR expression in arthritic paws tended to be similar in early and late disease, with TLR1 and 2 moderately higher in late disease. TLR expression in unaffected paws varied according to gene and disease status but was generally lower in resistant paws. Disease status-specific profiles of TLR expression were observed in spleens, lymph nodes, blood cells and the liver. Notably, TLR2 expression rose then fell in the transition from naïve to pre-onset to early arthritis. TLR gene expression profiles are strongly associated with disease status. In particular, increased expression in the blood precedes clinical manifestation.


Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Leucócitos/imunologia , Receptores Toll-Like/metabolismo , Animais , Artrite Experimental/sangue , Artrite Experimental/diagnóstico , Artrite Experimental/patologia , Artrite Reumatoide/sangue , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/cirurgia , Autoanticorpos/sangue , Autoanticorpos/imunologia , Colágeno/administração & dosagem , Colágeno/imunologia , Adjuvante de Freund/administração & dosagem , Adjuvante de Freund/imunologia , Perfilação da Expressão Gênica , Humanos , Leucócitos/metabolismo , Camundongos , Índice de Gravidade de Doença , Membrana Sinovial/imunologia , Membrana Sinovial/patologia
4.
Front Aging ; 2: 681428, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35821991

RESUMO

Mitochondrial health and cellular metabolism can heavily influence the onset of senescence in T cells. CD8+ EMRA T cells exhibit mitochondrial dysfunction and alterations to oxidative phosphorylation, however, the metabolic properties of senescent CD8+ T cells from people living with type 2 diabetes (T2D) are not known. We show here that mitochondria from T2D CD8+ T cells had a higher oxidative capacity together with increased levels of mitochondrial reactive oxgen species (mtROS), compared to age-matched control cells. While fatty acid uptake was increased, fatty acid oxidation was impaired in T2D CD8+ EMRA T cells, which also showed an accumulation of lipid droplets and decreased AMPK activity. Increasing glucose and fatty acids in healthy CD8+ T cells resulted in increased p-p53 expression and a fragmented mitochondrial morphology, similar to that observed in T2D CD8+ EMRA T cells. The resulting mitochondrial changes are likely to have a profound effect on T cell function. Consequently, a better understanding of these metabolic abnormalities is crucial as metabolic manipulation of these cells may restore correct T cell function and help reduce the impact of T cell dysfunction in T2D.

5.
Rheumatology (Oxford) ; 60(2): 947-957, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32984900

RESUMO

OBJECTIVES: About half of RA patients treated with TNFα inhibitors either do not respond or lose their initial therapeutic response over time. The clinical response is measured by reduction in DAS28, which primarily reflects inflammation. However, other effects of TNFα inhibitors, such as impact on bone erosion, are not assessed by DAS28. We aimed to examine the effect of TNFα inhibitors on bone density, bone biomarkers and cytokine production in responder and non-responder patients and assessed mechanisms of action. METHODS: BMD in the lumbar spine and femur neck of 117 RA patients was measured by DEXA scan. Bone turnover biomarkers CTX, osteoprotegerin (OPG), osteocalcin and RANKL were measured by ELISA. Levels of 16 cytokines in plasma and in tissue culture supernatants of ex vivo T cells were measured by multiplex assays and ELISA. The effect of treatment with TNFα inhibitors on blood mononuclear cell (MNC) differentiation to osteoclast precursors (OCP) was measured flow cytometry and microscopy. RESULTS: TNFα inhibitors improved lumbar spine BMD but had modest effects on blood bone biomarkers, irrespective of patients' clinical response. Blood OCP numbers and the ability of monocytes to differentiate to OCP in vitro declined after treatment. Treatment also reduced RANK expression and IL-20 production. BMD improvement correlated with reduced levels of IL-20 in responder patients. CONCLUSION: This study reveals that TNFα inhibitors reduce lumbar spine bone loss in RA patients irrespective of changes in DAS28. The reduction in bone loss is associated with reduction in IL-20 levels in responder patients.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Reabsorção Óssea , Diferenciação Celular/efeitos dos fármacos , Vértebras Lombares , Inibidores do Fator de Necrose Tumoral/farmacologia , Absorciometria de Fóton/métodos , Adulto , Artrite Reumatoide/diagnóstico , Remodelação Óssea/efeitos dos fármacos , Reabsorção Óssea/diagnóstico , Reabsorção Óssea/imunologia , Reabsorção Óssea/prevenção & controle , Feminino , Humanos , Interleucinas/sangue , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/efeitos dos fármacos , Vértebras Lombares/patologia , Masculino , Osteocalcina/sangue , Osteoprotegerina/sangue , Gravidade do Paciente , Resultado do Tratamento
6.
JCI Insight ; 5(19)2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33004686

RESUMO

Engineering T cells to express chimeric antigen receptors (CARs) specific for antigens on hematological cancers has yielded remarkable clinical responses, but with solid tumors, benefit has been more limited. This may reflect lack of suitable target antigens, immune evasion mechanisms in malignant cells, and/or lack of T cell infiltration into tumors. An alternative approach, to circumvent these problems, is targeting the tumor vasculature rather than the malignant cells directly. CLEC14A is a glycoprotein selectively overexpressed on the vasculature of many solid human cancers and is, therefore, of considerable interest as a target antigen. Here, we generated CARs from 2 CLEC14A-specific antibodies and expressed them in T cells. In vitro studies demonstrated that, when exposed to their target antigen, these engineered T cells proliferate, release IFN-γ, and mediate cytotoxicity. Infusing CAR engineered T cells into healthy mice showed no signs of toxicity, yet these T cells targeted tumor tissue and significantly inhibited tumor growth in 3 mouse models of cancer (Rip-Tag2, mPDAC, and Lewis lung carcinoma). Reduced tumor burden also correlated with significant loss of CLEC14A expression and reduced vascular density within malignant tissues. These data suggest the tumor vasculature can be safely and effectively targeted with CLEC14A-specific CAR T cells, offering a potent and widely applicable therapy for cancer.


Assuntos
Carcinoma Pulmonar de Lewis/prevenção & controle , Carcinoma Ductal Pancreático/prevenção & controle , Moléculas de Adesão Celular/metabolismo , Imunoterapia Adotiva/métodos , Lectinas Tipo C/metabolismo , Neovascularização Patológica/prevenção & controle , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Animais , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Moléculas de Adesão Celular/genética , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Lectinas Tipo C/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/imunologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/prevenção & controle
8.
Clin Mol Allergy ; 18: 6, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32280308

RESUMO

BACKGROUND: The aim was to determine the level of inflammatory cytokines, eosinophil cationic protein and IgE in allergic rhinitis (AR) patients. SUBJECTS AND METHODS: Blood samples were taken from 88 AR patients and 88 healthy controls (HC). Each sample was analysed for eosinophil counts by flow cytometry, IgE by ECLIA, ECP, IL-17, and IL-33 by using ELISA test. RESULTS: There was no significant difference between AR patients and the control group in age and gender. Levels of eosinophils, IgE, ECP, IL-17, IL-33 and the total symptom scores were significantly higher in AR patients than the HC (P = 0.0001). Serum ECP correlated with IL-17 (P = 0.041, r = 0.42), IL-33 (P = 0.0001, r = 080), and IgE levels (P = 0.017, r = 0.45) in the R patients. There was no correlation between IL-17 and IL-33. There was a correlation between symptom scores and eosinophils (P = 0.026, r = 0.52), and IgE (P = 0.001, r = 0.60) in the patients. No correlation was observed between symptom scores and ECP, IL-17, and IL-33 in the AR patient. CONCLUSIONS: Patients with AR have significant higher serum levels of ECP, IL-17, and IL-33 than healthy controls. This indicates that these markers could be used to in order to diagnose AR and to monitor disease. Inhibitory molecules to IL-17 and IL-33 may be considered as novel treatment strategies.

9.
Eur J Clin Invest ; 49(1): e13032, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30289986

RESUMO

BACKGROUND: Th17 cells have nonredundant roles in maintaining immunity, particularly at mucosal surfaces. These roles are achieved principally through the production of cytokines and the recruitment of other immune cells to maintain the integrity of mucosal barriers and prevent the dissemination of microorganisms. Th17 cells are heterogeneous and exhibit a considerable degree of plasticity. This allows these cells to respond to changing environmental challenges. However, Th17 cells also play pro-inflammatory roles in chronic autoimmune diseases. The trigger(s) that initiate these Th17 responses in chronic autoimmune diseases remain unclear. DESIGN: In this report, we provide an overview of studies involving animal models, patient data, genome wide association studies and clinical trials targeting IL-17 for treatment of patients to gain a better understanding of the pathogenic roles of Th17 cells play in a range of autoimmune diseases. RESULTS: The report sheds light on likely triggers that initiate or perpetuate Th17 responses that promote chronic inflammation and autoimmunity. The divergent effects of tumour necrosis factor alpha blockade on Th17 cells in patients, is explored. Furthermore, we highlight the role of Th17 cells in inducing autoreactive B cells, leading to autoantibody production. Pathogenic bacterial species can change Th17 cell phenotype and responses. These findings provide insights into how Th17 cells could be induced to promoting autoimmune disease pathogenesis. CONCLUSION: This article provides an overview of the distinct roles Th17 cells play in maintaining immunity at mucosal surfaces and in skin mucosa and how their functional flexibility could be linked with chronic inflammation in autoimmune rheumatic diseases.


Assuntos
Doenças Autoimunes/imunologia , Células Th17/fisiologia , Artrite Reumatoide/etiologia , Artrite Reumatoide/imunologia , Autoimunidade/fisiologia , Diferenciação Celular/imunologia , Estudo de Associação Genômica Ampla , Humanos , Intestinos/imunologia , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/imunologia , Fenótipo , Psoríase/etiologia , Psoríase/imunologia , Escleroderma Sistêmico/etiologia , Escleroderma Sistêmico/imunologia , Transdução de Sinais/imunologia , Pele/imunologia
10.
Arthritis Rheumatol ; 70(3): 450-461, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29193892

RESUMO

OBJECTIVE: Systemic sclerosis (SSc) has the highest case-specific mortality of any rheumatic disease, and no effective therapy is available. A clear manifestation of SSc is the presence of autoantibodies. However, the origin of autoantibody-producing B lymphocytes, their mechanisms of activation and autoantibody production, and their role remain unclear. This study was undertaken to identify mechanisms that contribute to pathogenic B cell generation and involvement in SSc and to assess the altered distribution and function of B cells in SSc patients. METHODS: Multicolor flow cytometry was performed to determine B cell subset distribution, cytokine production, and tolerance induction in SSc patients and healthy controls. Cytokine production following stimulation of the cells ex vivo was determined by multiplex assay. RESULTS: A range of defects in B lymphocyte tolerance and cytokine production in SSc were noted. There was evidence of altered distribution of transitional B cell subsets, increased production of interleukin-6 (IL-6) and IL-8, and defective tolerance induction in SSc B cells. In addition, B cells from SSc patients had a reduced ability to produce IL-10 when stimulated through innate immune pathways. In contrast to healthy individuals, tolerance checkpoints in SSc patients failed to suppress the emergence of B cells that produce autoantibodies with specificity to the Scl-70 antigen, which is strongly associated with SSc. These defects were paralleled by altered intracellular signaling and apoptosis following B cell receptor engagement. CONCLUSION: Our findings provide new insights into mechanisms underlying defective B lymphocyte responses in patients with SSc and their contribution to disease.


Assuntos
Linfócitos B/metabolismo , Citocinas/metabolismo , Escleroderma Sistêmico/imunologia , Adulto , Idoso , Autoanticorpos/imunologia , Linfócitos B/imunologia , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade
11.
Cytokine ; 101: 4-13, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27639923

RESUMO

TNFα is a principal pro-inflammatory cytokine vital for immunity to infections. However, its excessive production is involved in chronic inflammation and disease pathology in autoimmune diseases. Evidence for its pathogenic role is validated by the fact that its neutralisation by therapeutic agents in vivo is beneficial in ameliorating disease and controlling symptoms. Paradoxically, however, treatment with TNFα inhibitors can either have no clinical effects, or even exacerbate disease in some patients. The explanation for such contradictory outcomes may lay in how and which downstream signalling pathways are activated and drive disease. TNFα causes its effects by binding to either or both of two membrane-bound receptors, TNFR1 and TNFR2. Engagement of the receptors can induce cell death or cell proliferation. T cells both produce and respond to TNFα and depending on whether the cytokine is membrane-bound or soluble and the level of expression of its two receptors, the biological outcome can be distinct. In addition, polymorphisms in genes encoding TNFα and T cell signalling proteins can significantly impact the outcome of TNFα receptor engagement. Early studies revealed that effector T cells in patients with rheumatoid arthritis (RA) are hyporesponsive due to chronic exposure to TNFα. However, recent evidence indicates that the relationship between TNFα and T cell responses is complex and, at times, can be paradoxical. In addition, there is controversy as to the specific effects of TNFα on different T cell subsets. This review will summarise knowledge on how TNFα modulates T cell responses and the effect of engaging either of its two receptors. Furthermore, we discuss how such interactions can dictate the outcome of treatment with TNFα inhibitors.


Assuntos
Artrite Reumatoide/imunologia , Doenças Autoimunes/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Fator de Necrose Tumoral alfa/genética , Animais , Antirreumáticos/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/fisiopatologia , Regulação da Expressão Gênica/imunologia , Humanos , Inflamação/imunologia , Inflamação/fisiopatologia , Camundongos , Polimorfismo Genético , Receptores do Fator de Necrose Tumoral/imunologia , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/imunologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/imunologia
12.
Clin Rev Allergy Immunol ; 53(2): 237-264, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28456914

RESUMO

B lymphocytes are critical for effective immunity; they produce antibodies and cytokines, present antigens to T lymphocytes and regulate immune responses. However, because of the inherent randomness in the process of generating their vast repertoire of antigen-specific receptors, B cells can also cause diseases through recognizing and reacting to self. Therefore, B lymphocyte selection and responses require tight regulation at multiple levels and at all stages of their development and activation to avoid diseases. Indeed, newly generated B lymphocytes undergo rigorous tolerance mechanisms in the bone marrow and, subsequently, in the periphery after their migration. Furthermore, activation of mature B cells is regulated through controlled expression of co-stimulatory receptors and intracellular signalling thresholds. All these regulatory events determine whether and how B lymphocytes respond to antigens, by undergoing apoptosis or proliferation. However, defects that alter regulated co-stimulatory receptor expression or intracellular signalling thresholds can lead to diseases. For example, autoimmune diseases can result from altered regulation of B cell responses leading to the emergence of high-affinity autoreactive B cells, autoantibody production and tissue damage. The exact cause(s) of defective B cell responses in autoimmune diseases remains unknown. However, there is evidence that defects or mutations in genes that encode individual intracellular signalling proteins lead to autoimmune diseases, thus confirming that defects in intracellular pathways mediate autoimmune diseases. This review provides a synopsis of current knowledge of signalling proteins and pathways that regulate B lymphocyte responses and how defects in these could promote autoimmune diseases. Most of the evidence comes from studies of mouse models of disease and from genetically engineered mice. Some, however, also come from studying B lymphocytes from patients and from genome-wide association studies. Defining proteins and signalling pathways that underpin atypical B cell response in diseases will help in understanding disease mechanisms and provide new therapeutic avenues for precision therapy.


Assuntos
Autoimunidade , Linfócitos B/imunologia , Imunidade Humoral , Imunomodulação , Transdução de Sinais/imunologia , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
13.
Clin Rev Allergy Immunol ; 53(2): 265-276, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28488248

RESUMO

Biologic TNFα inhibitors are a mainstay treatment option for patients with rheumatoid arthritis (RA) refractory to other treatment options. However, many patients either do not respond or relapse after initially responding to these agents. This study was carried out to identify biomarkers that can distinguish responder from non-responder patients before the initiation of treatment. The level of cytokines in plasma and those produced by ex vivo T cells, B cells and monocytes in 97 RA patients treated with biologic TNFα inhibitors was measured before treatment and after 1 and 3 months of treatment by multiplex analyses. The frequency of T cell subsets and intracellular cytokines were determined by flow cytometry. The results reveal that pre-treatment, T cells from patients who went on to respond to treatment with biologic anti-TNFα agents produced significantly more GM-CSF than non-responder patients. Furthermore, immune cells from responder patients produced higher levels of IL-1ß, TNFα and IL-6. Cytokine profiling in the blood of patients confirmed the association between high levels of GM-CSF and responsiveness to biologic anti-TNFα agents. Thus, high blood levels of GM-CSF pre-treatment had a positive predictive value of 87.5% (61.6 to 98.5% at 95% CI) in treated RA patients. The study also shows that cells from most anti-TNFα responder patients in the current cohort produced higher levels of GM-CSF and TNFα pre-treatment than non-responder patients. Findings from the current study and our previous observations that non-responsiveness to anti-TNFα is associated with high IL-17 levels suggest that the disease in responder and non-responder RA patients is likely to be driven/sustained by different inflammatory pathways. The use of biomarker signatures of distinct pro-inflammatory pathways could lead to evidence-based prescription of the most appropriate biological therapies for different RA patients.


Assuntos
Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Linfócitos B/imunologia , Biomarcadores Farmacológicos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-17/metabolismo , Linfócitos T/imunologia , Adulto , Idoso , Antirreumáticos/farmacologia , Artrite Reumatoide/diagnóstico , Células Cultivadas , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Fator de Necrose Tumoral alfa/antagonistas & inibidores
14.
World J Gastroenterol ; 23(8): 1345-1352, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28293081

RESUMO

AIM: To determine how the auto-antibodies (Abs) profiles overlap in chronic hepatitis C infection (CHC) and autoimmune hepatitis (AIH) and correlate to liver disease. METHODS: Levels of antinuclear Ab, smooth muscle antibody (SMA) and liver/kidney microsomal-1 (LKM-1) Ab and markers of liver damage were determined in the sera of 50 patients with CHC infection, 20 AIH patients and 20 healthy controls using enzyme linked immunosorbent assay and other immune assays. RESULTS: We found that AIH patients had more severe liver disease as determined by elevation of total IgG, alkaline phosphatase, total serum bilirubin and serum transaminases and significantly higher prevalence of the three non-organ-specific autoantibodies (auto-Abs) than CHC patients. Antinuclear Ab, SMA and LKM-1 Ab were also present in 36% of CHC patients and related to disease severity. CHC cases positive for auto-Abs were directly comparable to AIH in respect of most markers of liver damage and total IgG. These cases had longer disease duration compared with auto-Ab negative cases, but there was no difference in gender, age or viral load. KLM-1+ Ab CHC cases showed best overlap with AIH. CONCLUSION: Auto-Ab levels in CHC may be important markers of disease severity and positive cases have a disease similar to AIH. Auto-Abs might have a pathogenic role as indicated by elevated markers of liver damage. Future studies will unravel any novel associations between these two diseases, whether genetic or other.


Assuntos
Autoanticorpos/imunologia , Hepatite C Crônica/diagnóstico , Hepatite C Crônica/imunologia , Hepatite Autoimune/diagnóstico , Hepatite Autoimune/imunologia , Adolescente , Adulto , Idoso , Autoanticorpos/metabolismo , Estudos de Casos e Controles , Criança , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Feminino , Hepatite C Crônica/sangue , Hepatite Autoimune/sangue , Humanos , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Músculo Liso/metabolismo , Fatores Sexuais , Adulto Jovem
15.
Proc Natl Acad Sci U S A ; 113(23): E3240-9, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27226306

RESUMO

Resolution of inflammation has emerged as an active process in immunobiology, with cells of the mononuclear phagocyte system being critical in mediating efferocytosis and wound debridement and bridging the gap between innate and adaptive immunity. Here we investigated the roles of cytochrome P450 (CYP)-derived epoxy-oxylipins in a well-characterized model of sterile resolving peritonitis in the mouse. Epoxy-oxylipins were produced in a biphasic manner during the peaks of acute (4 h) and resolution phases (24-48 h) of the response. The epoxygenase inhibitor SKF525A (epoxI) given at 24 h selectively inhibited arachidonic acid- and linoleic acid-derived CYP450-epoxy-oxlipins and resulted in a dramatic influx in monocytes. The epoxI-recruited monocytes were strongly GR1(+), Ly6c(hi), CCR2(hi), CCL2(hi), and CX3CR1(lo) In addition, expression of F4/80 and the recruitment of T cells, B cells, and dendritic cells were suppressed. sEH (Ephx2)(-/-) mice, which have elevated epoxy-oxylipins, demonstrated opposing effects to epoxI-treated mice: reduced Ly6c(hi) monocytes and elevated F4/80(hi) macrophages and B, T, and dendritic cells. Ly6c(hi) and Ly6c(lo) monocytes, resident macrophages, and recruited dendritic cells all showed a dramatic change in their resolution signature following in vivo epoxI treatment. Markers of macrophage differentiation CD11b, MerTK, and CD103 were reduced, and monocyte-derived macrophages and resident macrophages ex vivo showed greatly impaired phagocytosis of zymosan and efferocytosis of apoptotic thymocytes following epoxI treatment. These findings demonstrate that epoxy-oxylipins have a critical role in monocyte lineage recruitment and activity to promote inflammatory resolution and represent a previously unidentified internal regulatory system governing the establishment of adaptive immunity.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Monócitos/metabolismo , Oxilipinas/metabolismo , Peritonite/metabolismo , Animais , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose
16.
Saudi Med J ; 36(11): 1305-11, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26593163

RESUMO

OBJECTIVES: To evaluate the efficacy of orally-administered alendronate compared with intravenously-administered zoledronate. METHODS: This prospective study was carried out at Barts Health HNS Trust between April 2010 and March 2012. This study compares changes in bone mineral density (BMD) in 234 patients treated with 2 bisphosphonates: alendronate taken orally, and zoledronate administered intravenously. One hundred and eighteen patients received alendronate at 70 mg/week, while 116 patients received zoledronate once annually. Dual energy x-ray absorptiometry was used to measure BMD of the left hip and anterior-posterior spine (lumbar L1-L4) skeletal sites at baseline, and at one-, and 2-years post-treatment. RESULTS: This study provides evidence that lumbar spine BMD increased by 3.6% in patients receiving alendronate, and 5.7% in patients receiving zoledronate after 2 years compared with baseline values (p=0.0001 for both). Total hip BMD decreased in patients treated with alendronate by 0.4% but increased in patients receiving zoledronate by 0.8% (p=0.0001). CONCLUSION: This study provides evidence that zoledronate is more effective than alendronate in treating patients with osteoporosis and with no gastrointestinal (GI) serious side effects. Furthermore, zoledronate appears to have the added advantage of a better safety profile in patients suffering from GI intolerance of oral bisphosphonates.


Assuntos
Alendronato/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Difosfonatos/uso terapêutico , Imidazóis/uso terapêutico , Osteoporose/tratamento farmacológico , Administração Oral , Idoso , Alendronato/administração & dosagem , Conservadores da Densidade Óssea/administração & dosagem , Estudos de Coortes , Difosfonatos/administração & dosagem , Feminino , Humanos , Imidazóis/administração & dosagem , Infusões Intravenosas , Masculino , Pessoa de Meia-Idade , Ácido Zoledrônico
17.
Mediators Inflamm ; 2015: 205156, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26101460

RESUMO

Th17 cells provide protective immunity to infections by fungi and extracellular bacteria as well as cancer but are also involved in chronic inflammation. The cells were first identified by their ability to produce interleukin 17A (IL-17A) and, subsequently, associated with chronic inflammation and autoimmunity. Th17 cells have some gene profile similarity with stem cells and can remain dormant in mucosal tissues for long periods. Indeed, recent studies suggest that functionally distinct subsets of pro- and anti-inflammatory Th17 cells can interchange phenotype and functions. For development, Th17 cells require activation of the transcription factors STAT3 and RORγt while RUNX1, c-Maf, and Aiolos are involved in changes of phenotype/functions. Attempts to harness Th17 cells against pathogens and cancer using vaccination strategies are being explored. The cells gain protective abilities when induced to produce interferon γ (IFNγ). In addition, treatment with antibodies to IL-17 is effective in treating patients with psoriasis, psoriatic arthritis, and refectory rheumatoid arthritis. Moreover, since RORγt is a nuclear receptor, it is likely to be a potential future drug target for modulating Th17 functions. This review explores pathways through which Th17 subsets are induced, the molecular basis of their plasticity, and potential therapeutic strategies for their modulation in diseases.


Assuntos
Células Th17/imunologia , Doenças Autoimunes/terapia , Plasticidade Celular , Humanos , Interferon gama/biossíntese , Mycobacterium tuberculosis/imunologia , Neoplasias/terapia , Pseudomonas aeruginosa/imunologia , Streptococcus pneumoniae/imunologia , Vacinação
18.
Postgrad Med J ; 90(1063): 282-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24647582

RESUMO

Eosinophilic oesophagitis (EoE) is an inflammatory disorder of the oesophagus which has become increasingly recognised over recent years, although it remains underdiagnosed in many centres. It is characterised histologically by a significant eosinophilic infiltration of the oesophageal mucosa (>15 eosinophils per high powered field), and clinically with features of oesophageal dysfunction such a dysphagia, food impaction, and proton pump inhibitor (PPI) resistant dyspepsia. Fibrosis and oesophageal remodelling may occur and lead to oesophageal strictures. An allergic predisposition is common in the EoE population, which appears to be primarily food antigen driven in children and aeroallergen driven in adults. Evidence suggests that the pathogenesis of EoE is due to a dysregulated immunological response to an environmental allergen, resulting in a T helper type 2 (Th2) inflammatory disease and remodelling of the oesophagus in genetically susceptible individuals. Allergen elimination and anti-inflammatory therapy with corticosteroids are currently the mainstay of treatment; however, an increasing number of studies are now focused on targeting different stages in the disease pathogenesis. A greater understanding of the underlying mechanisms resulting in EoE will allow us to improve the therapeutic options available.


Assuntos
Corticosteroides/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Esofagite Eosinofílica/diagnóstico , Esôfago/patologia , Adulto , Constrição Patológica/diagnóstico , Constrição Patológica/terapia , Transtornos de Deglutição/etiologia , Dilatação/métodos , Esofagite Eosinofílica/complicações , Esofagite Eosinofílica/patologia , Esofagite Eosinofílica/fisiopatologia , Esofagite Eosinofílica/terapia , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Resultado do Tratamento
19.
PLoS One ; 8(9): e75107, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24058654

RESUMO

The epoxygenase CYP2J2 has an emerging role in inflammation and vascular biology. The role of CYP2J2 in phagocytosis is not known and its regulation in human inflammatory diseases is poorly understood. Here we investigated the role of CYP2J2 in bacterial phagocytosis and its expression in monocytes from healthy controls and Crohns disease patients. CYP2J2 is anti-inflammatory in human peripheral blood monocytes. Bacterial LPS induced CYP2J2 mRNA and protein. The CYP2J2 arachidonic acid products 11,12-EET and 14,15-EET inhibited LPS induced TNFα release. THP-1 monocytes were transformed into macrophages by 48h incubation with phorbol 12-myristate 13-acetate. Epoxygenase inhibition using a non-selective inhibitor SKF525A or a selective CYP2J2 inhibitor Compound 4, inhibited E. coli particle phagocytosis, which could be specifically reversed by 11,12-EET. Moreover, epoxygenase inhibition reduced the expression of phagocytosis receptors CD11b and CD68. CD11b also mediates L. monocytogenes phagocytosis. Similar, to E. coli bioparticle phagocytosis, epoxygenase inhibition also reduced intracellular levels of L. monocytogenes, which could be reversed by co-incubation with 11,12-EET. Disrupted bacterial clearance is a hallmark of Crohn's disease. Unlike macrophages from control donors, macrophages from Crohn's disease patients showed no induction of CYP2J2 in response to E. coli. These results demonstrate that CYP2J2 mediates bacterial phagocytosis in macrophages, and implicates a defect in the CYP2J2 pathway may regulate bacterial clearance in Crohn's disease.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Doença de Crohn/metabolismo , Sistema Enzimático do Citocromo P-450/biossíntese , Escherichia coli/metabolismo , Macrófagos/enzimologia , Monócitos/enzimologia , Fagocitose , Ácido 8,11,14-Eicosatrienoico/metabolismo , Antígenos CD/biossíntese , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/biossíntese , Antígenos de Diferenciação Mielomonocítica/genética , Antígeno CD11b/biossíntese , Antígeno CD11b/genética , Linhagem Celular , Doença de Crohn/genética , Doença de Crohn/microbiologia , Doença de Crohn/patologia , Citocromo P-450 CYP2J2 , Sistema Enzimático do Citocromo P-450/genética , Indução Enzimática/efeitos dos fármacos , Feminino , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/microbiologia , Macrófagos/patologia , Masculino , Monócitos/microbiologia , Monócitos/patologia
20.
Viruses ; 5(3): 777-91, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23462708

RESUMO

Infection by respiratory syncytial virus (RSV) affects approximately 33 million infants annually worldwide and is a major cause of hospitalizations. Helper T lymphocytes (Th) play a central role in the immune response during such infections. However, Th lymphocytes that produce interleukin 17 (IL-17), known as Th17 lymphocytes, in addition to been protective can also cause pathology that accompany this type of infection. The protective effects of Th17 is associated with better prognosis in most infected individuals but heightened Th17 responses causes inflammation and pathology in others. Studies employing animal models haves shown that activated Th17 lymphocytes recruit neutrophils and facilitate tertiary lymphoid structure development in infected lungs. However, IL-17 also inhibits the ability of CD8+ lymphocytes to clear viral particles and acts synergistically with the innate immune system to exacerbate inflammation. Furthermore, IL-17 enhances IL-13 production which, in turn, promotes the activation of Th2 lymphocytes and excessive mucus production. Studies of these animal models have also shown that a lack of, or inadequate, responses by the Th1 subset of T lymphocytes enhances Th17-mediated responses and that this is detrimental during RSV co-infection in experimental asthma. The available evidence, therefore, indicates that Th17 can play contradictory roles during RSV infections. The factors that determine the shift in the balance between beneficial and adverse Th17 mediated effects during RSV infection remains to be determined.


Assuntos
Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/imunologia , Células Th17/imunologia , Animais , Humanos , Lactente , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...